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Introduction: Estimations of peak discharge rates and
durations of floods will play critical roles in discussions about
megafloods and their relevance to the history of water on Earth
and Mars. However, the movement of the floodwater is not
easily modeled in an exact form because it strongly correlates
to turbulent forces. In addition to that, actual floods progres-
sively inundate complicated rough terrains, which introduces
an additional complexity on the movement of the megaflood.
For these reasons, empirical equations, especially the Manning
equation developed in the fluvial hydrology field, are widely
used to analyze megafloods [e.g., 1-3]. Nevertheless, the Man-
ning resistant coefficient of a megaflood is not easily estimated
by extrapolation from measured stream flows of much smaller
floods. Here we discuss its theoretical background and its role
in megaflood inundation processes by numerical calculations
of our new flood simulation code (see [4] for a detail of our
code).

Theoretical view of the Manning coefficient: First, we
follow the traditional discussion of turbulence [e.g., 5, 6] to
derive a theoretical expression of the Manning equation.

Considering a time-averaged velocity ua and a velocity
fluctuation u+, the velocity u at a certain depth can be written
as:

u = ua + u+. (1)

Using the mixing length l like the mean free path in the kinetic
theory of gases, Prandtl hypothesized that the average of the
absolute value of velocity fluctuations is proportional to the
velocity gradient:

u+ ∼ w+ ∼ l
∂ua

∂z
, (2)

where w+ is the vertical velocity fluctuation. The vertically
carried momentum in a unit time and unit area is ρ(ua +
u+)(w+). This momentum can be considered to correspond
to the turbulent shear stress, τt, and therefore,

τt = −ρ(uaw+ + u+w+). (3)

Time-averaged values of the fluctuations would equal zero, so
that the above equation can be rewritten as

τt = −ρu+w+ = ρl2
(

∂ua

∂z

)2

. (4)

Considering the large Reynolds number for flood flows, the tur-
bulent shear stress much greater than the viscous shear stress.
Therefore, the shear stress τzx can be written as

τzx ∼ ρl2
(

∂u

∂z

)2

. (5)

Mixing length l can be considered as a scale of the movement
due to the turbulence. Therefore, l should be zero at the bottom

Figure 1: (left) n′ versus a wide range of h/r. (right) Calcu-
lated hydrographs against time with different Manning coeffi-
cients (n=0.01, 0.05, and 0.1).

of the flow and will be larger in accordance with length from
the bottom. This may be expressed as l = κz, where κ is
called the Karman constant.

We assume the shear stress (or the Reynolds stress) is
approximately constant throughout the flow and that it has a
value equal to the boundary shear stress at the base. These
assumptions let us calculate the velocity profile of a turbulent
flow. Since the shear stress at the bottom τ0 can be related

to the frictional velocity Uf as Uf =

√

τ0

ρ
, we can write the

velocity as:
du

dz
=

Uf

κz
. (6)

Integrating this equation, using a scale length of roughness r,
we can write

u = Uf (
1

κ
ln

z

r
+ A). (7)

Thus, average velocity ū

(

=
1

h

∫ h

0

udz

)

becomes

ū =
(

A −
1

κ
+

1

κ
ln

h

r

)

√

ghS0. (8)

One of the most famous approaches to predict the average
velocity in fluvial hydrology is Chézy’s equation, which relates
the average velocity to slope as: ū = C ′

√
hS0. A similar

approach, based on experiments, uses the Manning roughness
coefficient n [m−1/3s]:

ū =
h1/6

n

√

hS0. (9)

This equation is often shown to predict water movement very
well, and its value is summarized in databases for many natural
rivers [e.g., 5]. Comparing this equation and equation (8), we
can obtain a theoretical expression of Manning’s n as:

n =
(

A −
1

κ
+

1

κ
ln

h

r

)−1 (

h

r

)

1

6 r
1

6

√
g

(10)
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If we write
(

A −
1

κ
+

1

κ
ln

h

r

)−1 (

h

r

)

1

6

as n′, we can rewrite

this equation as
n = n′r1/6g−1/2. (11)

Figure 1-left shows n′ is nearly constant over a wide range
values of (h/r), when we use A = 8.5 and κ = 0.4. For
the one order change in depth h, from h/r=100 to 1000, for
example, n′ varies only 10%. However, if the gravity changes
from 9.8m3/s to 3.7m3/s, n increases about 60%. Therefore,
the above equation suggests that the Manning n is much more
strongly dependent on gravity than on the depth of flow. Sim-
ilar discussion based on a dimensionless drag coefficient can
be seen in [7].

Effect of n on a simple slope: Using our semi-3d flood
simulation code [4], we calculated flows in a channel under
various Manning coefficients to understand its relevance to
progressive inundation by a megaflood. We assumed a gentle
planar slope, with a size of 100km x 100km, confined on both
sides by walls. Water is discharged from a 100km-wide line
source, which is located at 30km downslope from the top of the
calculation area. Figure 1-right shows calculated hydrographs
at the 50km downslope point from the source line for different
Manning coefficients. Calculation conditions other than the
Manning coefficient are set constant (discharge duration is
1day; discharge rate is 107m3/s; discharged water volume
is 8.64x104km3; and the slope is 0.01). Although the total
volume of discharged water is the same, discharge increases
rapidly for smaller Manning coefficients because the Manning
coefficient represents the flow resistance in the flood. Note
that hydrograph recession curves are much steeper for smaller
Manning coefficients.

Effect of n on a real topography: The role of the
Manning coefficient on a real topography is not as simple as
that on a smooth plain or a channel. To illustrate this, we show
simple calculations of the Missoula floods using a current-day
DEM. We calculated flood flows over the larger area impacted
by Missoula flooding. To make the simplest evaluation of
this factor, we defined a constant Manning coefficient over the
whole area. Figure 2 illustrates some typical results of our
calculations, showing the complex influence of the Manning
roughness coefficient on flow morphology. Smaller Manning
coefficients (Fig. 2-a) make the water flow more efficient,
so that the water cannot become deep enough to build high
hydraulic potential. Therefore, flooding in this case enters
the region without effective widening (Fig. 2-a). However,
as seen in Fig. 2-b and c, the flow paths are different when
we use larger Manning coefficients. This is because flow that
is retarded by higher friction can obtain sufficient hydraulic
potential to flow over a topographic barrier.

Discussions: The Manning roughness coefficient is a pa-
rameter, that determines not only changes in flow velocity and
the shapes of the drainage hydrographs, but also to the depths
which contribute to determining particular paths. There is a

real question as to the applicability of the empirical Manning
coefficient, developed empirically for modern river systems,
to a cataclysmic flood which is several orders of magnitude
larger than any observed flood. However, as we already dis-
cussed, the dependence of Manning coefficient on the depth is
quite weak, so that the error included in upscalling the coeffi-
cient is less problematic than otherwise might seen apparent.
Of course, this presumption is untested because cataclysmic
megafloods have never been measured. It is also important
to note that the bottom roughness will be changed during a
flood event. Erosion and sedimentation depend largely on
flow velocity, which is a function of the flow depth. There-
fore the bottom condition might be significantly changed in
accordance with the variation of the flow depth. This effect
is another issue to be considered. For a careful application
of the Manning equation, varying the value of the coefficient
and checking its performance on a study area are clearly quite
important.

References [1] Bretz, J. H. (1925) J. Geol., 33, 97-115.
[2] O’Connor, J. E. and V. R. Baker, (1992) Geol. Soc. Am.
Bull., 104, 267-279. [3] Baker V. R., et al. (1993) Science,
259, 348-350. [4] Miyamoto, H. et al. (2003) LPS XXXIV,
this volume. [5] Dingman, S. L. (1984) Fluvial Hydrology,
pp. 383, [6] Julien, P. (1994) Erosion and sedimentation,
Cambridge university press, 280pp. [7] Komar, P. D. (1979)
Icarus, 37, 156-181.

a: n=0.01
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Figure 2: Comparison of areal coverage under various Man-
ning coefficients. a: 2 days later, n=0.01; b: 3.5 days later;
n = 0.1; and C: 5 days later, n=1.0).
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